Benutzer-Werkzeuge

Webseiten-Werkzeuge


profil:klasse8:abschnitt-8-2-2

Dies ist eine alte Version des Dokuments!


Algorithmen und geometrische Konstruktionen

Geometrische Konstruktionen mit Zirkel und Lineal

Hilfsmittel:

  • unendlich langes Lineal ohne Längeneinteilung
  • Zirkel mit unendlich großer Zirkelspanne
  • (Stift)

Erlaubte Zeichenoperationen

  • ziehen einer Gerade (Strecke, Strahl) durch zwei gegebene Punkte
  • zeichnen eines Kreises um einen gegebenen Mittelpunkt durch einen weiteren Punkt bzw. mit dem Abstand zweier gegebener Punkte als Radius
  • übertragen des Abstandes zweier gegebener Punkte mit dem Zirkel

Geometrische Grundkonstruktionen

Konstruieren der Mittelsenkrechten einer Strecke

Gegeben ist eine Strecke PQ¯.

  1. Ich zeichne einen Kreis k1 um den Punkt P durch den Punkt Q.
  2. Ich zeichne einen Kreis k2 um den Punkt Q durch den Punkt P. Wo die Kreise k1 und k2 sich schneiden, entstehen die Punkte S1 und S2.
  3. Ich zeichne eine Gerade m durch die Punkte S1 und S2. m ist die gesuchte Mittelsenkrechte. Wo m die Strecke PQ¯ schneidet, entsteht der Punkt M. M ist der gesuchte Mittelpunkt der Strecke PQ¯.



Halbieren eines Winkels

Gegeben ist ein Winkel α mit dem Scheitelpunkt S.

  1. Ich zeichne einen Kreis k mit einen beliebigen Radius r um den Punkt S. Wo k die Schenkel des Winkels schneidet, entstehen die Punkte P und Q.
  2. Ich konstruiere die Mittelsenkrechte w der Strecke PQ¯. w ist die gesuchte Winkelhalbierende.



Errichten der Senkrechten zu einer Geraden in einem Punkt der Geraden

Gegeben ist eine Gerade g und ein Punkt P g.

  1. Ich zeichne einen Kreis k mit einen beliebigen Radius r um den Punkt P. Wo k die Gerade g schneidet, entstehen die Punkte S1 und S2.
  2. Ich konstruiere die Mittelsenkrechte s der Strecke S1S2¯. s ist die gesuchte Senkrechte.



Fällen des Lotes von einem Punkt auf eine Gerade

Gegeben ist eine Gerade g und ein Punkt P g.

  1. Ich zeichne einen Kreis k mit einen Radius r, der größer ist als der Abstand von P zu g, um den Punkt P. Wo k die Gerade g schneidet, entstehen die Punkte S1 und S2.
  2. Ich konstruiere die Mittelsenkrechte l der Strecke S1S2¯. l ist das gesuchte Lot.



Aufgabe 1

Konstruiere ein Beispiel für jede der Grundkonstruktionen!

Aufgabe 2

Führe die folgenden Konstruktionen mit Zirkel und Lineal durch!

  • a) Gegeben ist eine Gerade g und ein Punkt P g. Konstruiere mit Zirkel und Lineal eine Parallele zu g durch P. Bereite dich darauf vor, die Konstruktion mündlich zu beschreiben!
  • b) Gegeben ist eine Strecke PQ¯ und eine Gerade g. Konstruiere mit Zirkel und Lineal alle Parallelen, die zur Gerade g den Abstand PQ¯ haben. Bereite dich darauf vor, die Konstruktion mündlich zu beschreiben!
  • c) Gegeben sind die Strecken PQ¯ und RS¯. Konstruiere mit Zirkel und Lineal ein Rechteck mit den Seitenlängen PQ¯ und RS¯. Bereite dich darauf vor, die Konstruktion mündlich zu beschreiben!

arbeitsblatt_konstruktionen.pdf

Lösungsvideo zu a) und b)
Lösungsvideo zu c)

Aufgabe 3

Löse die letzten beiden Aufgaben mit Hilfe von Geogebra, indem du

Weitere Konstruktionsaufgaben

Da wir im vorherigen Abschnitt gezeigt haben, dass die Grundkonstruktionen mit Zirkel und Lineal durchführbar sind, können wir diese als neue Konstruktionsbefehle nutzen.

Aufgabe 4

Führe die folgenden Konstruktionen mit Hilfe Geogebra Geometrieapp nur unter Verwendung folgenden Konstruktionsbefehle durch! Notiere dir jeweils das Konstruktionsprotokoll!

  • Kreis(Punkt1,Punkt2)
  • Kreis(Punkt1,Strecke(Punkt2,Punkt3))
  • Schnittpunkt(Objekt1,Objekt2)
  • Gerade(Punkt1,Punkt2)
  • Strecke(Punkt1,Punkt2)
  • Mittelsenkrechte(Punkt1,Punkt2)
  • Senkrechte(Punkt,Gerade) (für Lot und Senkrechte in einem Punkt)
  • Winkelhalbierende(Punkt1,Punkt2,Punkt3) oder Winkelhalbierende(Gerade,Gerade)

Konstruktionen:

  • a) Umkreis eines Dreiecks
  • b) Inkreis eines Dreiecks
  • c) Schwerpunkt eines Dreiecks

https://www.herrmix.de/dokuwiki/lib/images/toolbar/bold.png=Algorithmen

Eine Konstruktionsbeschreibung ist die eindeutige Beschreibung eines Vorgangs. Weitere Beispiele für die Beschreibung von Vorgängen sind:

  • ein Kochrezept
  • eine Bedienungsanleitung
  • ein mathematisches Verfahren

Der arabische Mathematiker Abu Ja'far Mohammed ibn Musa al-Khowarizmi hat mathematische Verfahren in der ersten Hälfte des 9. Jahrhunderts beschrieben. Deshalb nennt man solche Beschreibungen auch Algorithmus.

Ein Algorithmus ist eine endliche Folge von eindeutig bestimmten Elementaranweisungen, die den Lösungsweg eines Problems exakt und vollständig beschreiben. 1)

1)
Ziegenbalg Jochen, Ziegenbalg Oliver, Ziegenbalg Bernd: Algorithmen von Hamurapi bis Gödel, {Springer Sektrum, Wiesbaden, 2016, S.26
profil/klasse8/abschnitt-8-2-2.1646053227.txt.gz · Zuletzt geändert: 2022/02/28 14:00 von lutz