Benutzer-Werkzeuge

Webseiten-Werkzeuge


profil:klasse8:abschnitt-8-2-2

Dies ist eine alte Version des Dokuments!


Algorithmen und geometrische Konstruktionen

Geometrische Konstruktionen mit Zirkel und Lineal

Hilfsmittel:

  • unendlich langes Lineal ohne Längeneinteilung
  • Zirkel mit unendlich großer Zirkelspanne
  • (Stift)

Erlaubte Zeichenoperationen

  • ziehen einer Gerade (Strecke, Strahl) durch zwei gegebene Punkte
  • zeichnen eines Kreises um einen gegebenen Mittelpunkt durch einen weiteren Punkt bzw. mit dem Abstand zweier gegebener Punkte als Radius
  • übertragen des Abstandes zweier gegebener Punkte mit dem Zirkel

Geometrische Grundkonstruktionen

Konstruieren der Mittelsenkrechten einer Strecke

Gegeben ist eine Strecke $\overline{\text{PQ}}$.

  1. Ich zeichne einen Kreis $\text{k}_1$ um den Punkt P durch den Punkt Q.
  2. Ich zeichne einen Kreis $\text{k}_2$ um den Punkt Q durch den Punkt P. Wo die Kreise $\text{k}_1$ und $\text{k}_2$ sich schneiden, entstehen die Punkte $\text{S}_1$ und $\text{S}_2$.
  3. Ich zeichne eine Gerade m durch die Punkte $\text{S}_1$ und $\text{S}_2$. m ist die gesuchte Mittelsenkrechte. Wo m die Strecke $\overline{\text{PQ}}$ schneidet, entsteht der Punkt M. M ist der gesuchte Mittelpunkt der Strecke $\overline{\text{PQ}}$.



Halbieren eines Winkels

Gegeben ist ein Winkel $\alpha$ mit dem Scheitelpunkt S.

  1. Ich zeichne einen Kreis k mit einen beliebigen Radius r um den Punkt S. Wo k die Schenkel des Winkels schneidet, entstehen die Punkte P und Q.
  2. Ich konstruiere die Mittelsenkrechte w der Strecke $\overline{\text{PQ}}$. w ist die gesuchte Winkelhalbierende.



Errichten der Senkrechten zu einer Geraden in einem Punkt der Geraden

Gegeben ist eine Gerade g und ein Punkt P $\in$ g.

  1. Ich zeichne einen Kreis k mit einen beliebigen Radius r um den Punkt P. Wo k die Gerade g schneidet, entstehen die Punkte $\text{S}_1$ und $\text{S}_2$.
  2. Ich konstruiere die Mittelsenkrechte s der Strecke $\overline{\text{S}_1\text{S}_2}$. s ist die gesuchte Senkrechte.



Fällen des Lotes von einem Punkt auf eine Gerade

Gegeben ist eine Gerade g und ein Punkt P $\not\in$ g.

  1. Ich zeichne einen Kreis k mit einen Radius r, der größer ist als der Abstand von P zu g, um den Punkt P. Wo k die Gerade g schneidet, entstehen die Punkte $\text{S}_1$ und $\text{S}_2$.
  2. Ich konstruiere die Mittelsenkrechte l der Strecke $\overline{\text{S}_1\text{S}_2}$. l ist das gesuchte Lot.



Aufgabe 1

Konstruiere ein Beispiel für jede der Grundkonstruktionen!

Aufgabe 2

Führe die folgenden Konstruktionen mit Zirkel und Lineal durch!

  • a) Gegeben ist eine Gerade g und ein Punkt P $\not\in$ g. Konstruiere mit Zirkel und Lineal eine Parallele zu g durch P. Bereite dich darauf vor, die Konstruktion mündlich zu beschreiben!
  • b) Gegeben ist eine Strecke $\overline{\text{PQ}}$ und eine Gerade g. Konstruiere mit Zirkel und Lineal alle Parallelen, die zur Gerade g den Abstand $\overline{\text{PQ}}$ haben. Bereite dich darauf vor, die Konstruktion mündlich zu beschreiben!
  • c) Gegeben sind die Strecken $\overline{\text{PQ}}$ und $\overline{\text{RS}}$. Konstruiere mit Zirkel und Lineal ein Rechteck mit den Seitenlängen $\overline{\text{PQ}}$ und $\overline{\text{RS}}$. Bereite dich darauf vor, die Konstruktion mündlich zu beschreiben!

arbeitsblatt_konstruktionen.pdf

Lösungsvideo zu a) und b)
Lösungsvideo zu c)

Aufgabe 3

Löse die letzten beiden Aufgaben mit Hilfe von Geogebra, indem du

Weitere Konstruktionsaufgaben

Da wir im vorherigen Abschnitt gezeigt haben, dass die Grundkonstruktionen mit Zirkel und Lineal durchführbar sind, können wir diese als neue Konstruktionsbefehle nutzen.

Aufgabe 4

Führe die folgenden Konstruktionen mit Hilfe Geogebra Geometrieapp nur unter Verwendung folgenden Konstruktionsbefehle durch! Notiere dir jeweils das Konstruktionsprotokoll!

  • Kreis(Punkt1,Punkt2)
  • Kreis(Punkt1,Strecke(Punkt2,Punkt3))
  • Schnittpunkt(Objekt1,Objekt2)
profil/klasse8/abschnitt-8-2-2.1644416575.txt.gz · Zuletzt geändert: 2022/02/09 15:22 von lutz