====Lösung der Aufgaben 1 und 2====
**Aufgabe 1**
a) falsche Aussage\\
b) keine Aussage\\
c) keine Aussage\\
d) keine Aussage\\
e) wahre Aussage\\
f) keine Aussage (Goldbachsche Vermutung)
**Aufgabe 2**
def istPrimzahl(n):
prim = True
k = 2
while k*k <= n and prim == True:
if n%k == 0:
prim = False
break
k +=1
return prim
t = "J"
while t == "J":
n = int(input("Gerade Zahl größer 2: "))
while not(n > 2 and n%2 == 0):
n = int(input("Gerade Zahl größer 2: "))
a = 2
b = n-2
while a <= n//2:
if istPrimzahl(a):
if istPrimzahl(b):
break
a += 1
b -= 1
print(a,"+",b,"=",n)
t = input("Nochmal? J/N: ")
import random
def istPrimzahl(n,k):
# Implementation uses the Miller-Rabin Primality Test
# The optimal number of rounds for this test is 40
# See http://stackoverflow.com/questions/6325576/how-many-iterations-of-rabin-miller-should-i-use-for-cryptographic-safe-primes
# for justification
# If number is even, it's a composite number
if n < 0:
return False
if n == 1:
return False
if n == 2 or n == 3:
return True
if n % 2 == 0:
return False
r, s = 0, n - 1
while s % 2 == 0:
r += 1
s //= 2
for _ in range(k):
a = random.randrange(2, n - 1)
x = pow(a, s, n)
if x == 1 or x == n - 1:
continue
for _ in range(r - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
t = "J"
while t == "J":
n = int(input("Gerade Zahl größer 2: "))
while not(n > 2 and n%2 == 0):
n = int(input("Gerade Zahl größer 2: "))
a = 2
b = n-2
while a <= n//2:
if istPrimzahl(a,1):
if istPrimzahl(b,1):
break
a += 1
b -= 1
print(a,"+",b,"=",n)
t = input("Nochmal? J/N: ")